Direct and Iterative Methods for Block Tridiagonal Linear Systems
نویسندگان
چکیده
Block tridiagonal systems of linear equations occur frequently in scientific computations, often forming the core of more complicated problems. Numerical methods for solution of such systems are studied with emphasis on efficient methods for a vector computer. A convergence theory for direct methods under conditions of block diagonal dominance is developed, demonstrating stability, convergence and approximation properties of direct methods. Block elimination (LU factorization) is linear, cyclic odd-even reduction is quadratic, and higher-order methods exist. The odd-even methods are variations of the quadratic Newton iteration for the inverse matrix, and are the only quadratic methods within a certain reasonable class of algorithms. Semi-direct methods based on the quadratic convergence of odd-even reduction prove useful in combination with linear iterations for an approximate solution. An execution time analysis for a pipeline computer is given, with attention to storage requirements and the effect of machine constraints on vector operations.
منابع مشابه
A New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation
In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...
متن کاملA convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations
We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced...
متن کاملAlternating-Direction Line-Relaxation Methods on Multicomputers
We study the multicomputer performance of a three-dimensional Navier-Stokes solver based on alternating-direction line-relaxation methods. We compare several multicomputer implementations, each of which combines a particular line-relaxation method and a particular distributed block-tridiagonal solver. In our experiments, the problem size was determined by resolution requirements of the applicat...
متن کاملA QR-decomposition of block tridiagonal matrices generated by the block Lanczos process
For MinRes and SymmLQ it is essential to compute a QR decomposition of a tridiagonal coefficient matrix gained in the Lanczos process. This QR decomposition is constructed by an update scheme applying in every step a single Givens rotation. Using complex Householder reflections we generalize this idea to block tridiagonal matrices that occur in generalizations of MinRes and SymmLQ to block meth...
متن کاملA time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The...
متن کامل